Nuestro sitio web utiliza cookies para mejorar y personalizar su experiencia y para mostrar anuncios (si los hay). Nuestro sitio web también puede incluir cookies de terceros como Google Adsense, Google Analytics, Youtube. Al usar el sitio web, usted consiente el uso de cookies. Hemos actualizado nuestra Política de Privacidad. Por favor, haga clic en el botón para consultar nuestra Política de Privacidad.

El poder de los datos: Entiende quién lo controla

Quién controla los datos y por qué eso es poder

Los datos son el recurso estratégico del siglo XXI: registros de comportamiento, preferencias, ubicación, salud, transacciones y comunicaciones que, cuando se agregan y analizan, producen conocimiento predictivo. Controlar esos datos equivale a dirigir la atención, la economía y la toma de decisiones, tanto a escala individual como colectiva. A continuación se analiza quiénes ejercen ese control, cómo lo hacen, qué consecuencias tiene y qué herramientas existen para equilibrar el poder.

¿Qué entendemos por “datos”?

Los datos incluyen:

  • Datos personales: nombre, dirección, identificadores, número de documento.
  • Datos de comportamiento: historial de navegación, búsquedas, clics, compras.
  • Datos de localización: geolocalización de dispositivos, rutas y desplazamientos.
  • Datos sensibles: salud, orientación política, creencias religiosas, biometría.
  • Metadatos: cuándo, dónde y cómo se creó una interacción, que a veces revela más que el contenido.

Actores que controlan los datos

  • Grandes plataformas tecnológicas: empresas que operan motores de búsqueda, redes sociales, servicios de correo, comercio electrónico y sistemas operativos. Acumulan datos de miles de millones de usuarios y ofrecen infraestructuras de análisis y publicidad.
  • Corredores y agregadores de datos: compañías que compran, limpian y venden perfiles a anunciantes, aseguradoras y otras empresas. Operan en segundo plano y muchas veces sin el conocimiento del titular de los datos.
  • Gobiernos y agencias estatales: recopilan datos por seguridad, impuestos, salud pública e infraestructura. Pueden acceder a datos privados por ley o mediante vigilancia masiva.
  • Empresas del sector salud, finanzas y telecomunicaciones: manejan datos extremadamente sensibles y tienen poder para decidir usos comerciales o institucionales.
  • Pequeñas y medianas empresas y desarrolladores: capturan nichos de datos específicos (por ejemplo, aplicaciones de fitness o domótica) que, integrados, enriquecen perfiles.

Sistemas de supervisión

Los actores anteriores emplean diversos mecanismos para convertir datos en poder:

  • Monopolio de la plataforma: cuanto mayor es la base de usuarios, más valiosos son los datos y más difícil es para los usuarios migrar a alternativas.
  • Economía de la atención: algoritmos que priorizan contenidos para maximizar tiempo en pantalla y, por ende, ingresos publicitarios.
  • Modelos predictivos y aprendizaje automático: permiten anticipar comportamientos, optimizar precios, segmentar audiencias y manipular decisiones.
  • Integración vertical: empresas que controlan hardware, software y servicios pueden recoger datos en múltiples puntos del ecosistema (ejemplo: dispositivos, aplicaciones, nube).
  • Intercambio y venta de datos: mercados legales e ilegales donde la información se comercializa, se combina y se revende.

Por qué el control de datos es poder

  • Ventaja económica: los datos permiten personalizar ofertas, reducir costes de adquisición de clientes y crear fuentes recurrentes de ingresos publicitarios. Las plataformas con datos extensos pueden capturar gran parte del valor generado en una cadena económica.
  • Influencia política: microsegmentación y mensajes personalizados facilitan campañas políticas dirigidas que pueden afectar la opinión pública y el resultado de elecciones.
  • Dominio de la información: controlar qué se muestra a quién (rankings, recomendaciones) orienta la agenda pública y cultural.
  • Seguridad y vigilancia: el acceso a metadatos y comunicaciones habilita vigilancia masiva, prevención del delito o, en manos autoritarias, represión y control social.
  • Discriminación algorítmica: modelos que usan datos sesgados pueden amplificar desigualdades en créditos, seguros, empleo o justicia.

Ejemplos destacados

  • Escándalo de Cambridge Analytica: uso indebido de datos de millones de usuarios de redes sociales para perfiles psicológicos y campañas políticas, que mostró cómo datos aparentemente inofensivos pueden influir en procesos democráticos.
  • Brecha de Equifax (2017): exposición de datos financieros y personales de alrededor de 147 millones de personas, ejemplificando los riesgos de concentración de datos críticos en pocas entidades.
  • Clearview AI: recopilación masiva de imágenes públicas para reconocimiento facial, con implicaciones para la privacidad y la vigilancia indiscriminada.
  • Sistemas de puntaje social en algunos países: integración de datos públicos y privados para evaluar “confiabilidad” ciudadana, condicionando acceso a servicios y movilidad social.
  • Compartición de datos sanitarios controversiales: acuerdos entre servicios de salud y empresas tecnológicas que generaron debates sobre consentimiento, utilidad y riesgos de uso comercial de datos clínicos.

Impactos sobre individuos y sociedades

  • Privacidad erosionada: pérdida de control sobre información personal y riesgos de exposición no autorizada.
  • Autonomía reducida: decisiones influenciadas por mensajes personalizados y arquitecturas de elección diseñadas para dirigir comportamientos.
  • Riesgo económico: usos discriminatorios que afectan acceso a crédito, empleo o seguros.
  • Fragilidad democrática: manipulación de información y polarización amplificada por burbujas algorítmicas.
  • Seguridad física: vulneración de datos que revela patrones de desplazamiento, vida privada o información sensible que puede facilitar delitos.

Normativas y reacciones sociales

Las reacciones combinan marcos legales, presión pública y cambios empresariales.

  • Regulaciones de protección de datos: normativas dirigidas a otorgar mayor control a los titulares sobre su información personal (acceso, rectificación, eliminación, portabilidad) y a reforzar la responsabilidad de quienes gestionan dichos datos; incluyen marcos regionales que establecen penalizaciones y exigen claridad en el tratamiento.
  • Auditorías y rendición de cuentas: revisiones externas de algoritmos, divulgación del funcionamiento de los modelos y evaluaciones independientes para identificar posibles sesgos y vulnerabilidades.
  • Movimientos de datos abiertos y soberanía de datos: propuestas que impulsan que comunidades y gobiernos administren sus datos estratégicos, con énfasis en ámbitos como salud y recursos públicos.
  • Herramientas técnicas: métodos como cifrado, técnicas de anonimización diferencial y sistemas federados que facilitan el análisis sin necesidad de concentrar información sensible.

Acciones que están al alcance de los usuarios y las organizaciones

  • Transparencia y consentimiento informado: solicitar explicaciones claras sobre finalidades y plazos de conservación, además de restringir de forma cuidadosa los permisos otorgados en cada aplicación.
  • Minimización de datos: las compañías deben limitarse a recopilar información imprescindible y conservarla únicamente durante un lapso acotado.
  • Auditorías internas y externas: llevar a cabo evaluaciones periódicas de modelos y procedimientos con el fin de identificar posibles sesgos o fallas de seguridad.
  • Adopción de tecnologías de protección: aplicar cifrado de extremo a extremo, métodos sólidos de anonimización y, cuando resulte viable, herramientas de aprendizaje federado.
  • Educación digital: impulsar la capacitación ciudadana sobre los riesgos de divulgar información personal y difundir prácticas que disminuyan la exposición, como la administración segura de contraseñas y el uso de autenticación multifactor.

Riesgos futuros y puntos de vigilancia

Con la expansión del Internet de las cosas, la biometría y la inteligencia artificial, los riesgos se amplifican: mayor granularidad de perfiles, predicción de estados emocionales o de salud, y capacidad de intervenir en procesos sociales en tiempo real. Es crucial vigilar la concentración de infraestructura de IA y el acceso a datos sensibles que permitan automatizar decisiones críticas.

El control de los datos no es solo una cuestión técnica o comercial: define quién tiene capacidad de moldear preferencias, distribuir oportunidades y decidir qué información llega a qué ojos. La concentración de datos en manos de unos pocos crea asimetrías de poder que afectan derechos, mercados y democracias. Las soluciones efectivas combinan regulación robusta, innovación tecnológica orientada a la privacidad y una ciudadanía informada que exija rendición de cuentas. Solo con esos elementos puede equilibrarse la balanza entre el valor económico de los datos y la preservación de dignidad, autonomía y justicia social.

Por Otilia Adame Luevano

También te puede gustar